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SOME REMARKS A B O U T  EMBEDDINGS OF 
IN FINITE-DIMENSIONAL SPACES 

BY 

V. D. MILMAN 

ABSTRACT 

The span X, of functions x,(t) = +-- 1, i = 1,. �9 .,n, on a set T in the supremum 
norm is considered. It is proved, for example, that Xn contains an isometric 
copy of l~ for k >-_cM~/n Iogn where M, is the Rademacher average of {x,}~'. 
This generalizes a result of Pisier for characters. The proof uses a new 
combinatorial tool. 

1. We use the standard notations of Banach theory which may be found, for 

example, in [5]. 

Let  G be a compact Abelian group with dual group F. For a set A, ]AI will 

denote the cardinality of A. 

The starting point of this paper is the following remarkable result of G. Pisier 

[lt]. 

1.1. THEOREM (G. Pisier). Let A C F be a finite set of characters G. Define the 

number 

M = Average 11E e , , ( t )  ] 
~v--+l 3,E.4 C(G) " 

There exists a subset B C A,  t[31 >- otM2/IA I (where a is an absolute constant), 

such that B is a Sidon set with some absolute constant d (this means that {3,},E8 in 

C-norm is d-equivalent to the natural basis in ll~l). 

The original proof of Theorem 1.1 is long and complicated. We give below a 

simple and short proof of the theorem for the case of the real characters. But the 

main purpose of section 2 of this paper is some generalizations (see Theorems 

2.1 and 2.3). For example, we completely ignore the group structure of G. The 

new point in our proof is the use of the following combinatorial lemma. 
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1.2. Let E~ be an n-dimensional space over the field of two elements 

{ - 1 , + l } . S o E ~ = { ~ = ( e , ' " , e , ) : e ~ = - + l } .  

n k - I  n LEMMA. Let S C E 2  and tSI>Ej=0(~). Then there exists a subset 
A C f l , . . . , n ] ,  IA I = k, such that the restriction S IA includes all 2 k different 
vectors on coordinates from A. 

This lemma was formulated in three different manners (and was proved in 

three different ways) in [12], [13] and [3]. In the paper [3] it was formulated in a 

more general form which may be useful for Banach space theory. 

All the results on finite-dimensional spaces to be discussed here are asympto- 

tic (for high dimensions). This is the reason why, whenever we speak of 

topological or geometrical properties of an n-dimensional space E, we actually 

mean some family X = {E,, dim E,--->oo (n .--.oo)} of spaces E,  such that all 

spaces of the family with sufficiently large dimensions possess (and uniformly in 

n) the indicated properties. We usually do not personalize absolute constants 

and we may use the same letter c for different numbers. 

2. In this section we always assume that x~ (t) are real-valued functions on a 

set T and [x,(t)[ = 1; on X, = span{x,(t)}~', n > 1, we consider the supremum 

norm on T. So Ily tl = sup{ly(t)[:  t E T} and, for K C_ T, 

II y IIc,., = sup{I y ( t ) l .  t E K}. 

2.1. THEOREM. Let M. =Average,,=• Then there exists a set 
A C [ 1 , . . . , n ]  such that span{x,},~A is isometric to l~ AI and IAI_- > 

[M~/lOn log n ] - 2 .  Moreover {x~}i~A is isometrically equivalent to the natural 
basis of l~ AI. 

PROOF. For every vector of signs f = ( e l , . - . , e n ) ~ E ~  let Te = { t E  T; 

sign x, (t) = e,}. Let S = {~; T ~  0} and k = [M2,/lOn log n] - 2. 

Case 1. There exists an A C [ 1 , . . . , n ] ,  IAl=k and IslA 1=2 (i.e. all 

possible k-vectors of signs are in S IA). In this case, for any set of real numbers 

{a,},~A there exists an ~ E S  and t~ E T~ such that a,x,(t,)=la, I for all i E A .  

Then 

I~A >=,~A a'x'(t~)=~la'l,eA 

and span {x~},~A is isometric to l~ AI. 

Case 2. There exists no A as in Case 1. Then by Lemma 1.2, I S'I is quite 

small, precisely, 
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I SI <-_ ~ < kn k (since k < n/2). 
i ~0 

Define, for K _-< E~, / z ( K ) =  [KI2-"  and, for d > 0 and ~ E S, 

E~(d) = { g E E'] : I[ ~ 8~x, tlc~T, < dl �9 

Then, 

It follows that 

/ --< d} =2-" (7) --> 1- 2exp " 

f') E~(d) _->l -21Slex  p ---->l-2knkexp - ~ n  " 
g ~ S  

Denote by E' the sum over ~ - N ~ s E ~ ( d )  and by E" the sum over 3 E  

f')~sE~(d); then 

M . = A v e l ~ , x ,  ll=2-"~,'maxl~3,x, + 2-" ~ ,"max ~ 8,x,[[ 
t~=• "= ~ e s  C(T~) i e s  C(T~) 

<= 2kn k § exp ( - d 2/4n) + d. 

For d = ~M, we get M, < ~3M, + 1 which is a contradiction. 

REMARK added in proof. As observed by L. Dor, if the estimate for I SI is 

changed to the better one I s l<(ne/k)  k (for k <= n/4) then our proof of 

Theorem 2.1 will give the recent result of J. Elton [AI_-  > cM~/n log(n/M,) for 

suitable absolute constant c. 

2.2. REMARK (due to G. Schechtman). If {x~(t)}~ is a set of characters on 

T = G (as in 1), then the set S in the proof has the group property (~ = (f~)7 E S 

and ~ = (~)~ E S imply ~ o ~ = (e~8~)L~ E S). In this case it is not necessary to use 

Lemma 1.2 and it is not hard to show that in case 2 in the proof, we have 

IS I < 2k-* The same proof as before precisely gives in that case G. Pisier's result 

I AI > CM~/n (one has to remember  that the only case which needs to be 

considered is M~ >> n In n). 

' W e  indicate  a proof of this fact. If we consider E~ as n-dimensional space over the field {0; 1} 
then S is a subspace. If IS I_- > 2 k then a = dim S--> k. The standard linear algebraic argument 
(elementary row and column operations) shows that there exist A C [1,..., n], [A I = a, and a basis 
{el}~'_1 of S such that {ej}7_ , restricted on A is the canonical basis of E~. 
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2.3. Tm~OREM. Let x,(t) be real valued functions such that Ix,(t)l = 1. 

Assume that span{x~}7 = X.  cannot be isometrically embedded in l~. Then there 

exists A C [1 , . . . ,  n] such that k = I A I > In N/ln n - 1 and {x,},~A is isometric to 

the natural basis of l~. 

PROOF. Again, as in the proof of Theorem 2.1, we have for k =InN~Inn 

either case 1 (which gives the Theorem) or case 2. Now, in case 2, we consider 

the functions {y~ (t) = Xr,( t)  = the characteristic function of the set Te}~s. The 

set {y~ (t)}~s gives (in C-norm) the natural basis in 1~ r. Therefore X,  ~ 1~ t. So 

I S I > N. But it was shown before that I S [ < kn k. This gives k > log N/log n - 1. 

2.4. COROLLARY. Let {x,(t)}~ be as in 2. Let span{x,}r=X contain a 2- 

isomorphic copy of l;. Then we can take in Theorem 2.3 k => Cr/ln n. 

The proof follows from the fact that if lg contains a 2-isomorphic copy of l; 

then N => exp cr for some absolute constant c ([7]). 

2.5. COROLLARY. Let {x~ (t)}~' and X, = span{x,}~' be as in 2. Let X ,  be an 

n-dimensional space with a cotype q constant I~. Then we can take in Theorem 

2.3 
n 

k _-> c ( /~ ,  q) (In(n + 1)) l+q " 

In that case X. contains a 2-isomorphic copy of l~ for r >>_cn 2/q by [2]. 
However,  this observation gives only 

n 21o 

k =>c .Kq lnn  . 

A more delicate argument uses an unpublished result of B. Maurey and gives 

(see G. Pisier [10]) that n-dimensional space X with a cotype q constant K~ 

cannot be embedded 2-isomorphically in l~ for 

n 
In N < C(K~, q)  (ln(n + 1)) q 

where C(Kq) depends only on Kq and q. It is unknown (see [10]) if (In n)  q is 

really necessary. 

2.6. COROLLARY. Let Xn = span{x, (0}7 be as in 2 and have dimension n. 

Assume that for no sequence p(n)---~oo can we find inside Xn for all large n a 

2-isomorphic copy of I p-~n~. It follows from the Maurey-Pisier Theorem [6] (see also 

[8]) that X~ has a cotype q constant K~ (for some q < ~) uniformly bounded 

independent of n. Then 
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Av  II~I e,x,l = Mn >=cn/(inn) ~ 
t i =---I 

for some constant c and some number a. (Use Corollary 2.5.) 

REMARK. If {X,}:'-t is a subset of characters as in 1.1 and x, (t) are real valued 

functions, then by Remark 2.2 we can reduce one In n in all previous results 

2.3--2.6. 

3. In this section we will use more information about type and cotype. Let X 

be an n-dimensional normed space, let/3~ ~=/32~(X) be cotype q constants for 

m-vector subsets of X and let a ~  ) be type p constants for m-vector subsets of X 

(see [6]). It is known (and easy [6]) that 

f l ~ ( X * )  <= a ~ ( X )  (1/q + 1/p = 1, X*  is a dual space to X). 

It is remarkable (and non-trivial) that for some absolute constant K, 

a ~ ( X )  <-_- K(ln n ) f l ~ ( X  *) (G. Pisier, see [9]). 

3.1. The following known lemma is a simple consequence of the definition of 
t3~ ~. 

LEMMA. I f  • (2m)(X) ~_~ c m  l/2-1/q~ for m = m (n ) ~ oo (n ~ oo) then any cotype of 

E is at least qo. 

3.2. THEOREM. Let dim X~ = n, a > 0 and let X ,  contain a 2-isomorphic copy 

of 17' for m _~ n ~. Then for any e > 0 and any integer k there exists no such that for 

n >--no X ,  contains a ( l+e)- isomorphic  copy of l~, which is ( l + e ) -  
complemented. 

PROOF. It is clear that a~(X)>= c X/m. It follows from 3 that 

c 

and, by 3.1, X* has no finite cotype. By the Maurey-Pisier theorem [6] for given 

e > 0 and some k = k(n)---~oo (n ---~oo) X *  contains a (1 + e)-isomorphic copy of 

l ~- and this implies the theorem. 

3.3. THEOREM. Let {x, (t)}? and X~ be as in 2, and dim X~ = n. Then for any 

e > 0 and k there exists no such that for n >= no X~ contains either a (1 + e)- 

isomorphic copy of l~ or X~ contains a (1 +e)-isomorphic and (1 + e ) -  

complemented copy o[ IL 
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PROOF. Follows from 2.5 and 3.2. 

4. In this section we consider a more general view on the result of type 3.2. 

For studying the structure of finite-dimensional normed spaces it is very useful 

and promising to consider in some sense "large" subspaces. Theorem 3.2 gives 

such an example. To introduce a precise language for a notion of "large" we 

need a few definitions. Let 

Logtk~m = log( . . .  (log m)). 

k times 

We say that m = re(n) ( <= n) is k-Log equivalent to n and we write m -L~ n if 

there exists some fixed a > 0 such that Log tk~ m => a Log tk~ n. We agree also that 

m Log,O~ n means that m >= an for some a > 0 and all n. Let {r~ (0}7' be the 

Rademacher functions on [0, 1], 

{ =~r~(t)x,,x, EE}CL2(E). R a d , , E =  y E L 2 ( E ) : y  

We say that p is a k-type (q is a k-cotype) of a family X of normed spaces 

X = {E,, dim E,  = n },~= iff Vt~ > 0 3 T~ (a)  (Cq (a)) such that for any n and any 

{x, Eo} " Ilx, II = 1, such that Log'k)m =>-c~ Log~k' n 

(for 1-type we say sometimes a power-type and similarly a power-cotype). We 

will refer to the smallest function T~ (~) as the characteristic function of k-type p 

(or similarly for a cotype). 

Let pk (X) = sup{p : p is k-type of X} and qk (X) = inf{q :q is k cotype of X}. 

In the same sense as was explained in 1, we use the notations pk (E,) and qk (En) 
for a given n-dimensional space En but we mean a family X of spaces En which 

possess the same indicated properties. It is clear that pk (X) decreases and qk (X) 

increases when k,~.  

4.1. The following result is the main reason for introducing the notions of 

k-types and k-cotypes. Its proof is based on the result of G. Pisier [9] which we 

mentioned in 3. Let K(n; m) be the norm of the canonical projection (called the 

Rademacher projection) Pm: L2(En)--* Radm (En), dim E~ = n. G. Pisier [91 has 

proved that lie. II g ln(n + 1) for some absolute constant K (it is easy to verify 

that ~ ' ( X )  _-< IIPm IIr and it leads to the result mentioned in Section 3). 
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THEOREM (duality). Let X and X* be dual families of normed (finite- 
dimensional) spaces (i.e., 17,, E X iff E* E X*). Then for any k >- 1 

1/pk (X) + 1/q~ (X*) = 1. 

PROOF. First, the standard simple argument gives that if p is a k-type for X 

then the dual number q (i.e. 1/p + 1/q = 1) is a k-cotype for X* (and even with 

the same function T~ (a)  - -  see the definition). So it is enough to prove that X* 

has k-cotype q implies that for any e > 0, X has k-type (p - e). To show this we 

prove the following inequality. 

LEMMA. Let Tp(t~;E) be a characteristic function of k-type p of the n- 
dimensional space E and let Cq (or ; E*) be the characteristic function of k-cotype q 
of E* where lip + 1/q = 1 and k >= 1. Then there exists some absolute constant C 
such that 

Te(a;E)<= C(ln n) 2. Cq(alp;E*). 

REMARK. For k > 1 we can take Cq (a) instead of Cq (a/p). 

PROOF. Let X -- X'~r,(t)x, ~ L2(E), IIx, Jl = 1, w h e r e  Log~)m => a Log'k)n. 
Let Pm be the Rademacher projection. It is sufficient to prove that 

]]X]I~,E)-<---6Cq(p)Inm'HP,.][m lip. 

There exists F = ET'ri (t)f~ ~ Rad,, (E*) such that 

(X, F)  < , 
II xll~,E~ ~< [Ip,~ [[ IlE[lt,E.,---IlPm ]l 

Assume that max]If, [I = 1. Take the following partition of [1 , - . . ,  m]: 

A, ={i ~ [1,.-., m]: 1/3' _-<llf, [l _-< 1/3'-1}, J = 1, . . . .  

Let I = {j :] Ai] < 2im ' /q and H = {j :[ Aj [ => 2im 1/,}. We have 

7~i (,~11f~ll)<=~2'ml/' ' l /3J-l<6ml/' .  

To estimate the sum over j E II we remark that the cardinality of II cannot be 

too large: 

m > E I A, I--- E 2'm 1,p > 21him 1/p. 
iEl l  jEII 
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So k = IIII--< (1/q)log m. Inside one subset A i we may use an inequality which 

follows from a cotype condition: 

~, II/,[[<=[A,I. 3~_,=]AjI,,v .]Aj],, ~ 1 
iEAi 3 i-I 

<3C q (p). [A, [,,v (f ]/,X, ,, (,): [[ FJ[a2,a;,). 

Finally we have 

Hf~ H < C '  ( p ) ( 3  lOqg m +  6) m '/p" IIFI[~,~;~. 

4.2. COROLLARY. Let for some k >- 0, pk (En) = 1. Then for any e > 0, En 

contains a (1 + e)-isomorphic and (1 + e)-complemented copy of l[ where t = 

t(n; e)--* oo for n -,oo and fixed e. 

It is clear that this fact is a generalization of Theorem 3.2 and has the same 

proof (use the Duality Theorem 4.1). 

4.3. If X~ has a k-cotype q (for some k _-> 0) then Xn contains a 2-isomorphic 

copy of l~ for r >-cn TM. 

PROOF is standard (see [2]) because it uses a cotype condition for An vectors of 

an almost equal length. 

4.4. It follows from the proof of theorem 3.3 from [1] that for any k _-> 2 if 

1 <= pk < 2 and pk is k-type of a family X = {E, } then En (for n large enough) 

contains for any e > 0 a (1 + e)-isometric copy of l~ and m is k-Log equivalent 

to n. 

4.5. It is known (see [4] and [14]) that for n-dimensional space E 

d(E, I;) <= 4a ~)(E) �9 fl ~)(E) < 4a~"(E)fl '*'(E)n ,,v-,/q 

where a ~) is a type p constant and fl(*~ is a cotype q constant of E. We would 

like to have the same kind of formula for power type and cotype. 

STATEMEm. Let E be an n-dimensional normed space with a 1-type p (i.e. 

power-type p)  characteristic function T~(A) and a 1-cotype q characteristic 

function Cq (A). Let 1 =< p < 2 and q > 2. Then for some absolute constant C 

CE 1 1 1 l))3+Uq-t/Vnt/V-t/q d(E, 1,)<= , ( p - ~ )  C, ( ( 1 - q ) ( ~ - 1 ) )  (ln(n + 
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PROOF. 

above. 

LEMMA. 

PROOF. 
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We will obtain this formula by estimating a~)(E) and/3~)(E)  from 

a ~)(E) -< 6[in(n + 1)]H/PTp (1/p - 1/2)n ,/p-~/2 

Similar to the proof of the lemma in 4.1. Let {x,}7 C E and IIx, II--< 1. 
Let Aj = {i : (1/3y _---Ux, II ~ 0/3Y -I} and take a = I/p - 1/2 > 0. We have 

(1) f .f 
Let I = {] : ]Aj ] < 2in" } and II = {]: [Aj ] _-> 2in ~ }. It is clear that (see 4.1, lemma) 

Inn  < Inn. 
I I I I - - < ( l _ a l l n 2  = 2  

We continue now the inequality (I) using the triangle inequality for ] E I and the 
power type condition for ] E II: 

,~, \3] 2in" + ~" T, (a) .  I A,  I' '  j~n 

~i (~)1 (3) j Ajp 'p =<3n" + 3Tp (a)  ~ I 
�9 j e l l  

<=Cn ~ +3T,fa) 2'lA, I IAj I'~-,)',) ''2. 

On the other hand 

( ) ( )  (1) 1 2j 
E IIx, II 2 >-- E 5 " >  E IAjl 

j lEA l j e l l  

and by HSider's inequality for p~ = p / ( 2 - p )  and q, = p / 2 ( p -  1) 

( j~,  )(2P)/P" I112(P =n2,,/p-,m(21nn)a,-,/p, Y. Ia, I'~-'~"- --- Im, I I -1,,< 

Therefore 

dt<=6n " +6Tfa)(Inn)1-l/pn';,-'a llx, ll = 

and this proves the lemma. 

To estimate fl~)(E) we will pass to E*.  It is well known (see [6] or [2]) that 
f l~)(E)= < a~)(E*). So, by the previous lemma 

fl~)(E) < 6(ln(n + 1))UqTq.(1/2 - 1/q ; E*)n ~;~" ,2 
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where  1/q '  + 1/q = 1 and  Tq, is a 1- type q '  charac te r i s t i c  funct ion  for  E * .  W e  

have,  by  the  l e m m a  f rom Sec t ion  4.1, 

/3 ~)(E) =< C .  ( ln(n + 1))l/q+2Cq ((1/2 - 1 / q ) .  1 /q ' ;  E ) n  1/2-1/q, 

for  some  abso lu t e  cons tan t  C. F ina l ly ,  we ob ta in  the  fo rmu la  using inequa l i ty  

d ( E , l ~ ) < = 4 a ~ ) ( E ) . ~ ) ( E )  which was m e n t i o n e d  at the  beg inn ing  of this 

sect ion.  
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